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Market-consistent economic scenarios are at the core of the 

measurement of the Technical Provisions under Solvency II. EIOPA 

guidelines and the French regulator ACPR, among others, have 

highlighted the importance of linking the calibration process with the risk 

profile of liabilities. Such requirement also applies to other regulations.  

Weights reflecting the sensitivity of the insurer’s liabilities are therefore to be assigned to each market information 

within the calibration process. This paper presents how neural networks can help deal with the intensive 

recalibrations required to achieve this objective.  

The European Insurance and Occupational Pensions Authority (EIOPA) guidelines state that:  

“Insurance and reinsurance undertakings should be able to demonstrate that the choice of financial 

instruments used in the calibration process is relevant given the characteristics of [their] obligations.”1 

To model interest rates in a risk-neutral environment, a calibration procedure is used to match the observable 

financial instruments in the market (the reference instruments). It is based on minimising discrepancies between 

the market prices and the prices implied by the model (so-called model prices), for a selected set of reference 

instruments. Such calibration process is performed for different risk-neutral models, from the simplest ones (e.g., 

one- or two-factor short rate models) to the most complex ones, such as the LIBOR Market Model with Stochastic 

Volatility and Displaced Diffusion (DDSVLMM). The latter is available, among other models, in the Economic 

Scenarios Generator Milliman CHESS™.2 This model is considered further in this paper, although the technique 

is generic and can be applied to other models. 

The most commonly used reference instruments are swaptions. The swaption market is rather deep and liquid, 

and covers instruments with very different characteristics, represented by three main parameters: maturity 

(time at which the option on swap can be exercised), tenor (period during which interest rate swap cash  flows 

are considered) and strike (which specifies the moneyness of the option). When the strike is equal to the 

current swap forward rate, the option is said to be at-the-money (ATM); otherwise, we refer to away-from-the-

money (AFM). 

One of the main drivers of increasing sophistication of risk-neutral interest models is to improve their ability to 

replicate the so-called volatility cube, i.e., swaptions for different maturities, tenors and strikes. Although the 

DDSVLMM is considered to be very good at replicating the entire volatility cube, in reality this replication is still 

not perfect, especially due to a finite number of model parameters as well as pricing approximations involved in 

the calibration process; hence prices of some instruments are replicated better than the others. Of course, this 

statement applies even more to simpler models, like one-factor or two-factor short rate models. 

 
1 EIOPA Guideline 57 on the valuation of technical provisions, calibration process. 

2 More information is available at https://www.milliman.com/en/products/milliman-chess. 

https://www.milliman.com/en/products/milliman-chess
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For this reason, a refined calibration to swaption prices is required in order to take into account the relative 

importance of swaptions for valuation. Each swaption is assigned a specific weight 𝑤𝑗 in order to reflect the 

related sensitivity of the insurer’s balance sheet. This type of weighting aims to improve the replication of the 

subsets of market data that are of higher importance with respect to the company’s risk profile, as opposed to 

other subsets. 

In general, if we denote the market price of 𝑗–th swaption by 𝑃𝑆𝑗
𝑀𝑎𝑟𝑘𝑒𝑡 and the price for the same swaption 

implied by the interest rate model with model parameters Θ by 𝑃𝑆𝑗
𝑀𝑜𝑑𝑒𝑙(Θ), the calibration reflecting the selected 

weighting scheme can be defined as search of the parameter set Θ(𝑜𝑝𝑡) that minimizes, e.g., the following 

objective function:    

∑ 𝑤𝑗 (𝑃𝑆𝑗
𝑀𝑎𝑟𝑘𝑒𝑡 − 𝑃𝑆𝑗

𝑀𝑜𝑑𝑒𝑙(Θ))
2

𝑗

, 

where the sum applies to all swaptions 𝑗 considered in the calibration process (typically with different values of 

maturity, tenor and strike). 

Until recently, the choice of weights (𝑤𝑗) often used to be arbitrary: as an illustrative example, e.g., defining it as 

1 for ATM swaptions, as well as for AFM swaptions with a specific tenor, while 0 weight is considered for all other 

swaptions. However, currently the awareness regarding the importance of reasonable aligning of weights with the 

risk profile is growing. As described in the next part of this paper, this can be approached with a methodology 

based on multiple recalibrations of a risk-neutral model, for shocks applied to the swaption surface. Taking into 

account the need for a number of model recalibrations, we propose an innovative methodology based on neural 

networks, which allows us to significantly improve the speed of the calibration process. 

The weights calibration problem 
The weights shall reflect the sensitivity of such indicators as the Own Funds (OF). In this specific exercise, the 

aim is to measure the sensitivity to swaptions, all other risk drivers being set at their central values (including 

interest rate level and equity volatilities, among others). To illustrate the problem, suppose that we represent OF 

as an ”optimal linear combination” of 𝑁 swaptions with prices 𝑃𝑖: 

𝑂𝐹 = 𝜇 + ∑ 𝛽𝑖𝑃𝑖

𝑁

𝑖=1

. 

This representation is made in the form of a replicating portfolio, where only swaptions are involved (in other 

words, all other possible assets are “hidden” in the formula within the constant term 𝜇).  

The reference value of OF estimated in a perfectly market-consistent way would reflect market prices as follows: 

𝑂𝐹𝑅𝑒𝑓 = 𝜇 + ∑ 𝛽𝑖𝑃𝑖
𝑀𝑎𝑟𝑘𝑒𝑡

𝑁

𝑖=1

. 

Using the model prices 𝑃𝑖
𝑀𝑜𝑑𝑒𝑙 produced by the DDSVLMM model, we also have the following representation of 

the modelled OF:  

𝑂𝐹𝑀𝑜𝑑𝑒𝑙 = 𝜇 + ∑ 𝛽𝑖𝑃𝑖
𝑀𝑜𝑑𝑒𝑙

𝑁

𝑖=1

. 

The aim is to minimise the discrepancy between the reference and the modelled OF, represented by the absolute 

difference |𝑂𝐹𝑅𝑒𝑓 − 𝑂𝐹𝑀𝑜𝑑𝑒𝑙|. From the Cauchy–Schwarz inequality, this replication error is bounded as:  

|𝑂𝐹𝑅𝑒𝑓 − 𝑂𝐹𝑀𝑜𝑑𝑒𝑙| ≤ √𝑁√∑ 𝛽𝑖
2(𝑃𝑖

𝑀𝑎𝑟𝑘𝑒𝑡 − 𝑃𝑖
𝑀𝑜𝑑𝑒𝑙)2

𝑁

𝑖=1

. 
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This means that in the calibration process involving a mean square error target, the valuation error can be 

controlled by setting the following weights:  

𝜔𝑖 = 𝛽𝑖
2. 

The problem, therefore, boils down to retrieving the sensitivity parameters: 

𝛽𝑖 =
𝜕𝑂𝐹

𝜕𝑃𝑖
. 

Those can be obtained in the following steps: 

1. Applying shocks for each swaption price or subset of swaption prices (note that we can instead refer to 

implied volatilities as needed).  

2. Calibrating the interest rate model based on shocked market information. 

3. Simulating the risk-neutral model with the updated parameters. 

4. Calculating the OF based on the risk-neutral scenarios generated, then compared to the original OF to 

estimate the sensitivity parameter. 

The original approach to calibrate the DDSVLMM model has been proposed by Wu & Zhang (2006),3 based on 

the original method from Heston (1993)4 applied to equity prices. In the recent years, we have developed a range 

of methods to accelerate the DDSVLMM calibration process, including the use of the so-called Gram-Charlier 

and Edgeworth expansions,5 efficient approximations based on polynomial processes,6 and acceleration of the 

optimisation procedure based on analytical calculation of the gradient.7 Those methods have proven to be 

efficient for applications involving intensive calibrations in a variety of contexts. In this paper, we present another 

novel approach based on neural networks. These networks have been successfully explored in mathematical 

finance to learn the model parameters from the information provided by the market. In this context, they also 

appear as a promising approach to the problem of weight design. Indeed, in this study the computational time 

has been reduced by a factor of 250 by using the neural network, as will be described below. 

Modelling interest rates 
Like the classical Libor Market Model, the DDSVLMM belongs to the family of interest rate models which define 

their dynamics for forward rates observable on the market (as opposed to short rate models like Hull-White or the 

instantaneous forward rate used in the Heath-Jarrow-Morton framework). Its volatility factor is modelled with a 

stochastic process, which facilitates replication of some market structures (smile, skew). In addition, its 

distribution is displaced with a shift to handle negative rates. 

MODEL DYNAMICS  

We consider a fixed horizon 𝑇 and a tenor structure with annual dates 𝑇0 = 0, 𝑇1,  … , 𝑇𝑁−1,  𝑇𝑁 = 𝑇. The forward 

rate prevailing over the period [𝑇𝑘 , 𝑇𝑘+1] is defined by: 

𝐹𝑘(𝑡) =
𝑃(𝑡, 𝑇𝑘)

𝑃(𝑡, 𝑇𝑘+1)
− 1. 

For a given displacement factor 𝛿 > 0, the displaced forward rate �̃�𝑘(𝑡) is built from the definition of the forward 

rate 𝐹𝑘(𝑡) by: 

�̃�𝑘(𝑡) = 𝐹𝑘(𝑡) + 𝛿. 

 
3 Wu, L., & Zhang, F. (2006). LIBOR market model with stochastic volatility. Journal of industrial and Management Optimisation 2(2), 199. 

4 Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. The Review of 

Financial Studies 6(2), 327-343. 

5 Devineau, L., Arrouy, P-E, Bonnefoy, P., & Boumezoued, A. (2020). Fast calibration of the Libor Market Model with stochastic volatility and 

displaced diffusion. Journal of Industrial & Management Optimisation 16 (4) : 1699-1729. 

6 P.-E. Arrouy, A. Boumezoued, B. Lapeyre, & S. Mehalla (2020). Jacobi Stochastic Volatility Factor for the Libor Market Model. Finance & 

Stochastics. 

7 Andres, H., Arrouy, P. E., Bonnefoy, P., Boumezoued, A., & Mehalla, S. (2020). Fast calibration of the LIBOR Market Model with stochastic 

volatility based on analytical gradient. arXiv preprint arXiv:2006.13521. 
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The dynamics of the (displaced) forward rate under the risk-neutral probability can be derived as follows (see Wu 

& Zhang, 2006):  

d�̃�𝑘(𝑡) = √𝑉𝑡�̃�𝑘(𝑡)𝜸𝒌(𝑡) ⋅ (d𝑾𝑡 − √𝑉𝑡𝝈𝒌+𝟏(𝑡)d𝑡). 

The components in bold refer to vectors; as such, the model involves multiple factors. The volatility pattern is 

driven by 𝜸𝒌(𝑡) and 𝝈𝒌+𝟏(𝑡) , which are interrelated based on no-arbitrage relationships. The components 𝜸𝒌(𝑡) 

are based here on the three parameters 𝑎, 𝑏 and 𝑐 that are to be estimated. 

Furthermore, (𝑉𝑡)𝑡≤𝑇 is the stochastic variance process following Cox-Ingersoll-Ross (CIR) dynamics under the 

risk-neutral measure: 

d𝑉𝑡 = 𝜅(𝜃 − 𝑉𝑡)d𝑡 + 𝜖√𝑉𝑡d𝑍𝑡. 

Finally, the correlation structure between forward rates and their variance is captured through a correlation 

parameter 𝜌 to be estimated in the calibration process. 

As a summary, the set of parameters to be estimated is: Θ = (𝑎, 𝑏, 𝑐, 𝜃, 𝜅, 𝜖, 𝜌). 

Calibration using neural networks 
The proposed methodology based on fitting neural network can be summarised in four steps: 

1. Training and test database construction: Generate a large sample of DDSVLMM typical parameters within 

prescribed grids (e.g., using Sobol sequences). Then compute the related prices from the standard pricing 

formulas of the DDSVLMM.  

2. Neural network training on swaptions volatilities: The neural network is trained on 80% of the sample to 

learn the parameters as a function of the volatilities; it is then tested on the remaining 20% of the sample.  

3. Neural network evaluation on test and selection of best neural network model. 

4. Use of the neural network for instantaneous calibration in the weight design approach. 

SIMULATED DATA 

The need to generate simulated data is mainly driven by the huge number of data points required to ensure a 

satisfactory learning of the neural network. If we compile daily observations of the last 20 years, we have 5,040 

(252*20) training surfaces, which is a relatively low number. In the simulation exercise, we generate parameters that 

reflect a reasonable range of swaption price values; the sample of parameters obtained is presented in Figure 1. 

FIGURE 1: BOX PLOT OF THE DDSVLMM PARAMETERS 
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FIGURE 2: NEURAL NETWORK ARCHITECTURE 

HYPER-PARAMETER VALUE 

NUMBER OF HIDDEN LAYERS {3, … ,11} 

NEURONS PER LAYER {64,128,256} 

EPOCHS {10,20,30 … ,200} 

BATCH SIZE {8,16,32 … ,256} 

ACTIVATION FUNCTIONS {𝑒𝑙𝑢, 𝑟𝑒𝑙𝑢, 𝑡𝑎𝑛ℎ, 𝑠𝑜𝑓𝑡𝑚𝑎𝑥, 𝑙𝑖𝑛𝑒𝑎𝑟} 

DROPOUT RATE {10%, 20%, … ,50%} 

Before training the neural network, an optimal architecture must be found. The table in Figure 2 summarises the 

range of hyper-parameters that are studied and compared:  

The number of layers and neurons per layer will drive the complexity of the neural network, for which we want to 

reach a trade-off between stability and replication accuracy. Epochs and batch sizes are also tuned to optimise 

the learning process. Different activation functions are tested to monitor the shape of the resulting response 

function (obtained as a composition of linear operations and the activation functions). Finally, a dropout rate is 

considered to manage overfitting.  

The retained neural network relies on 𝑡𝑎𝑛ℎ activation functions and is illustrated in Figure 3. 

FIGURE 3: CHOSEN NEURAL NETWORK ARCHITECTURE  

 

The table in Figure 4 summarises the different hyper-parameters obtained as a result of the grid search algorithm. 

FIGURE 4: RESULTING HYPER-PARAMETERS  

HYPER-PARAMETER VALUE 

Number of hidden layers 3 

Neurons per layer 64 

Epochs 100 

Batch size 8 

Activation functions 𝑡𝑎𝑛ℎ 

Dropout rate 50% 

Early stop 2 epochs with no validation error improvement (2 × 10−5) 
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NEURAL NETWORKS TRAINING 

The neural network is trained using the backpropagation algorithm. Weights and biases of the algorithm are 

updated using the stochastic gradient minimisation. The learning curve obtained is presented in Figure 5. 

FIGURE 5: LEARNING CURVE  

 

CALIBRATION RESULTS 

Because the neural network outputs the DDSVLMM parameters, we start testing the goodness of fit of the neural 

network by evaluating the error on the outputted parameters. In Figure 6, we depict the values of the output 

parameters as a function of 100 swaption surfaces (here randomly selected due to visualisation considerations), 

among the 20,000 surfaces from the test data:  

 In blue, the predicted values by the neural network 

 In orange, the test data  

The smallest errors are observed for the parameters 𝑎, 𝑏 and 𝑐. The volatility surfaces are indeed very sensitive 

to the variation of these three parameters.  

FIGURE 6: PREDICTION RESULTS ON TEST DATA PARAMETERS 
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FIGURE 6: PREDICTION RESULTS ON TEST DATA PARAMETERS (CONTINUED) 

 

 

The neural network can then be used to infer parameters based on market implied volatility quotes of swaptions 

as of 30 June2020. The parameters can then be converted into model swaption volatilities. The comparison 

between parameters obtained from the neural network and those obtained from the classical calibration 

approach8 is depicted in the table in Figure 7. 

FIGURE 7: PARAMETER COMPARISONS 

PARAMETER NEURAL  

NETWORK 

CLASSICAL  

CALIBRATION 

𝒂 0.0072 0.0053 

𝒃 0.008 0.030 

𝒄 0.058 0.094 

𝜿 0.044 0.089 

𝜽 0.41 0.27 

𝝐 0.23 0.21 

𝝆 0.87 0.062 

 

Some parameters are close, while others appear to differ. In order to provide an assessment of the calibration 

accuracy by the neural network, we measure the difference between the model volatilities for the neural network 

calibration and the market volatilities. The average absolute error on ATM swaption volatilities is 12 basis points 

(bps). This is to be compared to the average error of 5 bps between model volatilities from classical calibration 

and market volatilities. As could be expected, the neural network provides a higher error magnitude. Recall, 

however, that this provides, once fitted on the training data, an instantaneous parameter calibration (no 

computational cost), which is here the objective. 

 
8 Note that the parameters depicted are for purely illustration purposes and do not reflect Milliman CHESS calibration standards and any related 

recommendation for use in practice. 
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Weights design results 
Shocks are applied to the swaption volatilities to determine which swaption areas induce significant OF 

variations, in line with the weight design methodology described above. For each shock, a new swaption volatility 

surface is built, hence a new calibration of the DDSVLMM model is required. In this study, this is achieved 

through the use of the neural network, which makes the weight design approach faster as opposed to using the 

classical calibration method. In this study the computational time has been reduced by a factor of 250 by using 

the neural network. 

A preliminary step in the approach is to group swaption volatilities according to distinct areas that remain 

interpretable in line with company’s risk profile. Those volatilities relate in particular to maturity and tenor 

distribution, and to optionality (positive or negative strikes in the AFM area). Then the shocks are performed and 

the OF sensitivity is measured accordingly for each area. The OFs are calculated based on a simplified ALM 

model involving classical savings contracts. The results of the weight design approach are depicted in Figure 8, 

where the different areas are displayed for both ATM and AFM swaptions and highlighted in different colours, and 

where the weight values are disclosed according to their magnitudes on a scale {−; +; + +}.  

FIGURE 8: AREAS WEIGHTS RESULTS 

 

As we see in Figure 8, different weights have been designed to areas depending on maturity, tenor and strike. 

The weight design process exhibits in particular the relative importance of ATM market information as opposed to 

AFM market data. Interestingly, the 10-year tenor plays a central role as it conveys the highest weights. This 

seems interpretable regarding the way the underlying cash flow model works, because it involves the 10-year 

rate in three main mechanics: on the liability side, the credited rate calculation and dynamic lapses trigerring 

function; on the asset side, it is the reference maturity for reinvestments in bonds. 

Finally, we can compare the valuation of the OF based on a classical calibration in two cases: 

 Considering uniform weights, i.e., without paying attention to the optimal weight design and OF 

heterogenous sensitivity to subsets of market swaption volatilities 

 Considering the optimal weights as considered in this study 

The relative variation of the OF in the two cases has been proven to be nonnegligible in this study, as it can also 

be the case in a variety of contexts (depending on liability portfolio structure and economic conditions). In 

particular, the materiality of this impact can increase when the interest rate model replication capabilities are 

lowered or when the weight distribution becomes even more heterogenous.
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Concluding remarks 
We presented a calibration technique of the DDSVLMM relying on neural networks. The particular application we 

considered was the design of swaption weights in the calibration process. The use of neural networks in a 

context of such exercises, which require multiple recalibrations, is promising as it significantly reduces 

computational time, in this case up to a factor of 250.  

Of course, calibration accuracy is to be monitored because the neural network can be considered only as a proxy 

of the full calibration result, by overcoming the minimisation of the discrepancies between market data and 

classical model pricing. In this study, we have seen how an optimal weight design allows us to retrieve a better 

assessment of risk-neutral valuation.  

Other applications may be explored using such a faster calibration technique, for instance Nested Simulations as 

well as for calibration of any proxy methods for Solvency II Internal Models or the forecast of solvency ratio in a 

Standard Formula framework.  

How can Milliman help? 
Milliman has a depth of experience and expertise related to Economic Scenarios Generators (ESGs), including 

the following services: 

 Milliman CHESS™. We offer a “one-size-fits-all” ESG software-as-a-service (SaaS) solution, with a large 

spectrum of best-in-class models. We provide advice on the best model in each context and the relevant 

tailored calibrations in line with each specific risk profile. 

 Delivery of economic scenarios. We provide scenarios as a service, including custom calibrations and 

scenario generation at required frequencies 

 Production support. Secure the process by outsourcing production work, with the assistance of our teams in 

the generation of economic scenarios during production campaigns.  

 ESG review. Get updates and comfort on your in-house solution through a detailed external review of the 

modelling framework, including embedded parameters, implementation and validation of the results.  

 ESG implementation support. We help you move to an in-house ESG implementation and get the relevant 

support: thorough choice of models and assumptions, technical specifications, functional specifications and 

core code implementation. 

If you have any questions or comments on this paper or any other aspect of Economic Scenario Generators, 

please contact your local Milliman consultants or use the contact link below. 
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